

Manual
Version 2.3.2

Asset Store Description 2
Underlying Concepts 3
Getting started 4
Inspector Panel Reference 5

OscIn 5

OscOut 6

Other Topics 7
Timetags 7

Address Pattern Matching 7

Supported OSC Type Tags 8
Troubleshooting 9

No messages are received 9

Some messages are lost 10

Incoming bundles are not dispatched at timetag time 10

Incoming messages are always one frame delayed 10

Known issues 11
Support 11
License 11

/1 11

OSC
Simplification

Asset Store Description
An Open Sound Control (OSC) implementation tailored for Unity and designed for those who love the flexibility of scripting. It
is written from scratch and matured over several years of continuous use. OSC is a protocol for communicating between
applications and devices easily using URL-style messages with mixed argument types. It is widely used in "creative coding”,
music and VJ contexts, but also has potential as a general purpose networking tool.

Requires basic experience with C# scripting.

Features
- ZERO heap garbage in the update loop! (*1)
- All OSC argument types (*2)
- Bundles with timetags
- Full two-way OSC address pattern matching
- Mapping of OSC addresses to methods
- Common Unity types as blobs
- Monitoring of incoming and outgoing messages
- Monitoring of remote connection status
- Optional filtering of message duplicates

Supports
- UDP IPv4 Unicast, Broadcast and Multicast
- API Compatibility Level .NET 2.0 and 4.x
- MacOS, Windows and iOS (*3)

Includes
- Manual
- Reference
- Examples
- Full source code
- Runtime UI prefabs

Tested with
OpenFrameworks, Processing, Max/MSP, VVVV, TouchOSC, Lemur, Iannix and Vezer.

*1) If used as advised and your strings and blob lengths don't change.
*2) Except arrays.
*3) Not officially supported on other platforms, but it may work.

/2 11

Underlying Concepts
OSC simpl transmits messages targeting IPv4 addresses over unicast, broadcast and multicast UDP.
If those words sound familiar to you then skip this page.

OSC
Open Sound Control (OSC) is network protocol initiated in 1997 and developed at Center for New Music and Audio
Technologies (CNMAT). All about OSC at http://opensoundcontrol.org/

UDP
The User Datagram Protocol (UDP) is a network protocol that offers very fasts but unreliable transmission. Contrary to the
The File Transfer Protocol (FTP), UDP has no native mechanism for checking if messages reach their destination. No
connection is established. The messages are simply send to a network destination. All about UDP at https://
en.wikipedia.org/wiki/User_Datagram_Protocol

IPv4
The Internet Protocol version 4 (IPv4) is a version of the Internet Protocol (IP). For the purpose of OSC simpl, all we need to
know is that IPv4 defines the format of the IP addresses we use to target devices. The format is XXX.XXX.XXX.XXX, where
XXX is an integer between 0 to 255. For example; 192.168.1.101.

Unicast, Broadcast and Multicast
IPv4 offers three transmission modes; unicast, broadcast and multicast. The mode is defined by the IP address number.
Multicast ranges from 224.0.0.0 to 239.255.255.255, broadcast is always 255.255.255.25 and unicast occupies the
remaining addresses. For all modes, the sender needs to provide a target port number that the target device can listen on.

Unicast
Unicast transmission is used for targeting a singe device. A sender needs to know the IP address of the target device and a
port number for applications to listen on. The address 127.0.0.1 is called the loopback address, and is used for sending to
other applications on the same device. Unicasting is the fastest and most reliable mode of transmission.
	 For applications where low latency is critical, use unicast. Unless you are sending to many devices, unicast offers
better performance than broadcast and multicast.

Broadcast
Broadcast transmission is used for targeting all devices on the local network. A sender must send to the global address
255.255.255.255. Broadcasting is the slowest method of sending, but it is useful because the sender does not need to
know any IP addresses. Beware that the maximum transmission unit (MTU) may be limited for broadcasting. If your
messages don’t come through, try lowering your outgoing UDP buffer size low (see the Trouble Shooting section).

Multicast
Multicast is used for targeting a "multicast group" that applications on other devices may be listening to. A sender must
know a valid multicast address, ranging between 224.0.0.0 and 239.255.255.255. A receiver must also know the multicast
address. Multicasting is potentially faster than broadcasting, but slower than unicasting.

For multicast to work properly, all routers involved must be "multicast enabled" (most routers are).

/3 11

������������� �������������

�������������

�������������

8QLFDVWLQJ WR
�������������

������������� �������������

�������������

�������������

%URDGFDVWLQJ WR
���������������

������������� �������������

�������������

�������������

0XOWLFDVWLQJ WR
���������

���������

http://opensoundcontrol.org/
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol

Getting started
Learn by doing. Dive directly into the examples and get your hands dirty.

/4 11

Inspector Panel Reference
Below is a description of each field in the inspector panels for the components OscIn and OscOut. In most cases, the fields
are exactly the same as the public properties found in the included OSC simpl/Documentation/Reference.pdf.

OscIn
1. Port
The local network port that this component is set to
listen on.

2. Receive Mode
The type of transmission the component will listen
to. If set to UnicastBroadcastMulticast, and
additional Multicast Address field needs to be filled.

3. Local IP Address
The local network IP address that this device will
listen on.

4. Is Open
Indicates whether the component is open for
incoming messages.

5. Open On Awake
When enabled, the component will automatically
open when it gets the Awake call from Unity. Default
is false.

6. UDP Buffer Size
Set the internal buffer size of the UDP socket.

7. Filter Duplicates
When enabled, only one message per OSC address
will be forwarded every Update call. The last
(newest) message received will be used. Default is
true.

8. Add Time Tags To Bundles Messages
When enabled, timetags from bundles are added to contained messages as last argument. Incoming bundles are never
exposed, so if you want to access a time tag from an incoming bundle then enable this. Default is false.

9. Mappings
A list of mappings that bind messages with specific OSC Addresses and OSC Argument types to Unity methods.

10.
Expected OSC Address.

11.
Expected type of the first OSC Argument.

13.
Taget GameObject, Component and method.

14.
Add and remove methods.

12 & 15.
Remove and add mapping.

16 Messages
Console showing incoming messages. Header showing number of messages and bytes received last frame.

/5 11

1

2

3

4

5

6

7

8

9

10 11 12

13

14

15

16

OscOut
1. Port
The remote network port that this component
will send to.

2. Send Mode
The type of transmission the component will
send. The mode is derived from the Target IP
Address field.

3. Target IP Address
The remote network IP address that this
application will send to.

4. Is Open
Indicates whether the component is open and
ready to send messages.

5. Open On Awake
When enabled, the component will automatically
open when it gets the Awake call from Unity.
Default is false.

6. UDP Buffer Size
Set the internal buffer size of the UDP socket.

7. Bundle messages automatically
Set to false ONLY if the receiving end does not
support OSC bundles. Without bundling,
messages that are send successively are prone to
be lost. By default, messages are wrapped in a
bundle (or multiple bundles if the buffer size is
exceeded) that is send by the end of the Unity
frame.

8. Messages
Console showing outgoing messages. Header
showing number of messages and bytes send
last frame.

/6 11

1

2

3

4

5

6

7

8

Other Topics

Timetags
In OSC simpl timetags are represented by the type OscTimeTag. OscTimeTag objects are send implicitly with bundles and
explicitly as message arguments.

Incoming bundles are never exposed to the user. Instead, the contained messages are unwrapped automatically and send
to mapped methods. If you want to receive timetags from bundles, then enable 'addTimeTagsToBundledMessages' on
OscIn and grab the timetag from the last argument of your incoming bundled message.

OscTimeTag supports a precision of 0.0001 milliseconds (one DateTime tick) using the 'time' property, and a precision of
about 0.0000002 milliseconds if you manipulate the 'oscNtp' property directly (not recommended unless you understand the
protocol). Note that the precision of DateTime.Now is about 1 millisecond.

Address Pattern Matching
OSC simpl supports OSC 1.0 style Address Pattern Matching. In the original 1.0 design, pattern matching is one way: OSC
messages hold OSC Address Patterns that target OSC Methods that hold OSC Addresses. In practise, it is also useful for
OscMappings to hold patterns, that is why pattern matching in OSC simpl is two-way. When conflicting patterns are found
(when both a OscMessage and a OscMapping have patterns in the same parts of the address) they are simply ignored.

So what exactly is a OSC Address Pattern? These are examples:

	 Pattern	 	 	 Match
	 /*	 	 	 One address part containing anything.
	 /*/*	 	 	 Two address parts containing anything.
	 /lights/*	 	 	 /lights/ followed by one address part containing anything.
	 /{cat,dog}	 	 /cat and /dog
	 /[ch]at	 	 	 /cat and /hat
	 /?at	 	 	 /cat, /hat /bat and anything else you can replace the first character with.
	 /synth/[2-4]	 	 /synth/2, /synth/3 and /synth/4

See the OSC 1.0 specification for a full explanation:
http://opensoundcontrol.org/spec-1_0

/7 11

http://opensoundcontrol.org/spec-1_0

Supported OSC Type Tags

What about OSC Arrays?
The OSC 1.0 specification mentions arrays, signified by OSC Type Tags ‘[‘ and ‘]’. However, the way they are defined, they
are actually lists of mixed types, similar to the OSC Arguments themselves. This complicates the way arguments are get and
set in OSC simpl where System.Object is avoided at any cost (to eliminate garbage generated by “boxing”). OSC Arrays will
be supported in the future if an elegant zero garbage solution is found.

Sources
OSC spec 1.0 http://opensoundcontrol.org/spec-1_0
OSC spec 1.1 http://www.nime.org/proceedings/2009/nime2009_116.pdf

OSC
Type Tag

Meaning Unity Data Type Compatibility Byte Count Notes

f 32 bit float float OSC 1.0, OSC 1.1 4

d 64 bit float double OSC 1.0 nonstandard 8

i 32 bit integer int OSC 1.0, OSC 1.1 4

h 64 bit integer long OSC 1.0 nonstandard 8

s ASCII string string OSC 1.0, OSC 1.1 Variable One to four trailing zeros,
multiple of four.

S ASCII string string OSC 1.0 nonstandard Variable One to four trailing zeros,
multiple of four.

c ASCII char char OSC 1.0 nonstandard 4

T Boolean True bool OSC 1.0 nonstandard, OSC 1.1 0

F Boolean False bool OSC 1.0 nonstandard, OSC 1.1 0

r 32 bit rgba color Color32 OSC 1.0 nonstandard 4

b Blob byte[] OSC 1.0, OSC 1.1 Variable Multiple of four.

t OSC Time Tag OscTimeTag OSC 1.0 nonstandard, OSC 1.1 8

m MIDI message OscMidiMessage OSC 1.0 nonstandard 4

N Null OSC 1.0 nonstandard 0

I Impulse OSC 1.0 nonstandard, OSC 1.1 0 Was called “Infinitum” in OSC
1.0 and was later referred to as
“Impulse” in OSC 1.1.

/8 11

http://opensoundcontrol.org/spec-1_0
http://www.nime.org/proceedings/2009/nime2009_116.pdf

Troubleshooting

No messages are received
Step 1: Obtain IP address
How to get the IP address depends on your system.

	 [MacOS] Go to System Preferences –> Network and select the adapter you want to connect through.
	 [Windows] Go to Settings –> Network & Internet and select View your network properties.
	 [iOS] Go to Settings –> Wi-Fi and press the info ion next to the network you wish to connect through.

If you are building an app that is using OSC simpl to your device using, then you can use OscIn.localIpAddress to obtain the
primary IP address. Beware that on iOS, your mobile internet IP may be returned instead of your Wifi IP. In that case, use
OscIn.localIpAddressAlternatives to find the right one.

Step 2: Check connection
Send a ping message between the devices you want to connect.

	 [MacOS] Open the Terminal app and write ping followed by the target IP address (for example ping 192.168.1.39).
	 [Windows] Open the Command Prompt and do the same.

No replies? Ensure that the two devices are physically connected to the the same network and they obtain an IP address
from the same network. Still no progress? Continue below.

[Windows]
On Windows 10, you must enable “File and printer sharing” for messages to come through. Go to Windows Settings –>
Network & Internet –> Network and Sharing Centre –> Change advanced sharing settings –> File and printer sharing. Enable
“Turn on file and printer sharing”. Still no pings coming though? Continue below.

[MacOS]
On MacOS, in some cases, ping messages don’t reach Windows machines when the MacOS device are connected though
multiple network adapters. If you are trying to connect via ethernet, then try to turn off your wifi and ping again. Still no pings
coming though? Continue below.

Step 3: Firewall
Check your network sharing settings.

[MacOS] Go to System Preferences –> Security & Privacy –> Firewall –> Firewall Options. Find your Unity app or your build
app and allow incoming and outgoing connections.

[Windows] Go to Windows Settings –> Network & Internet –> Windows Firewall –> Allow an app through the wall. Find your
Unity app or your build app and allow incoming and outgoing connections. If OscIn still does not receive anything, then also
try go to Windows Settings –> Network & Internet –> Windows Firewall –> Advanced Settings -> Inbounds Rules. Here, you
may also have to find your Unity app or your build app and allow incoming connections.

At this point it should be possible to send and recieve pings between the two devices. Now open Unity and try again.

Step 4: Port
Make sure you are sending and receiving on the same port. Also make sure that no other applications are using that port.

Are you broadcasting?
If you are broadcasting (on 255.255.255.255), then the maximum transmission unit (MTU) may be limited. Try
setting“udpBufferSize” for your broadcasting OscOut component to 1024 or 512.

/9 11

Some messages are lost
UDP limitations
OSC simpl relies on UDP, a very fast but unreliable network protocol. UDP does not guarantee that messages reach their
destination. If the routers involved in your network are too busy then messages may get lost.

Internet limitations
If you are sending across the internet, then keep the size of your data packets below 512 bytes to increase the chance of
survival.

[OscIn] Multiple OscIn objects with same port
OSC simple allows multiple OscIn objects with same port, however only one of them will be receiving at the same time.
That's the nature of sockets. Even in cases where multiple applications can access the same port, the data is handed out
first-come, first-serve. Only one socket will receive.

[OscIn] Error occurred while receiving message.
If you get this warning in the console, and the next line spells "System.ArgumentException: length", then it is likely that the
package size of the message was too big. In the authors tests, the size limit for packages send in broadcast mode is 1472
bytes. This limit may vary depending on the system.

Incoming bundles are not dispatched at timetag time
Timed scheduling of incoming bundled messages is not supported. All messages are dispatched immediately. This is the
case for most OSC implementations and complies with a paper published in 2009 describing the forthcoming OSC 1.1.

Incoming messages are always one frame delayed
Script Execution Order
OscIn needs to be executed first to ensure low latency. When you inspect a OscIn component in the Unity Editor, OscIn is
automatically set to be first in the Script Execution Order. In the strange case that you never inspect an OscIn components,
you have to do it manually, just once. Find the setting under Project Settings.

/10 11

Known issues
MacOS 10.14.2 build interruptions
MacOS builds are interrupted when running in Window mode and hidden behind other windows, even though
Application.runInBackground is enabled. This causes regular interruptions in messages send by OSC simpl.
https://forum.unity.com/threads/macos-build-has-update-loop-hiccups-in-window-mode.627781/

Support
If you wish to contact the author for support, then please make sure that problem cannot be answered by this manual, the
scripting reference or the provided examples. You can write the author on the related forum thread:

https://forum.unity.com/threads/released-osc-simpl.382244

License
OSC simpl is a Unity Asset Store product created by Danish interaction design consultancy Sixth Sensor. Please read the
End User License Agreement on Unity's website.

https://unity3d.com/legal/as_terms

/11 11

https://forum.unity.com/threads/macos-build-has-update-loop-hiccups-in-window-mode.627781/
https://forum.unity.com/threads/released-osc-simpl.382244
http://sixthsensor.dk
https://unity3d.com/legal/as_terms

	Asset Store Description
	Underlying Concepts
	Getting started
	Inspector Panel Reference
	OscIn
	OscOut

	Other Topics
	Timetags
	Address Pattern Matching

	Supported OSC Type Tags
	Troubleshooting
	No messages are received
	Some messages are lost
	Incoming bundles are not dispatched at timetag time
	Incoming messages are always one frame delayed

	Known issues
	Support
	License

